SweeTile: Efficient Tiling for 360° Video Streaming on Light-Weight VR Devices

Cheng-Yeh Chen, Hung-Yun Hsieh

National Taiwan University Mobile Networks and Wireless Communications Lab (TONIC)

Jun 1 2023

Introduction	Related work and motivation	Observation and analysis	SweeTile configuration	Evaluation	Conclusion	Reference
			000000000000000000000000000000000000000			

Outline

- Introduction
 - Tile-based 360° video streaming
 - Metrics and tradeoff in tiling mechanism
- Related work and motivation
 - Dynamic tiling and fixed tiling
 - Motivation for light-weight VR devices
- Observation and analysis
 - Observation of human field of view and viewport position
 - Real-world dataset analysis
- SweeTile configuration
 - Combination and rotation of sweet spot
 - Client-side deployment
- Evaluation
- Conclusion

Tile-based 360° video streaming

- 360° video streaming aims to support full coverage of field of view (FoV) without limitation on users' head movement.
- Since only 20% of panoramic video would be viewed by a user [1], transmitting only the visible part of video could substantially save the transmission and computation resources.
- By splitting the whole panoramic video into separate "tiles", the video player could flexibly determine which tiles to transmit.

Figure: Scenario of 360° videos streaming $[2] < \exists + \langle \exists + \rangle = 0 \land \langle a \rangle$

3/46

Mapping 3D visual content onto a 2D plane

- To apply existing video compression and encoding techniques, the 3D panoramic video is first mapped onto a 2D plane.
- There are several ways to transform 3D visual content onto its 2D projection. We focus on the most common projection: EquiRectangular Projection (ERP).

Figure: Demonstration of ERP [3].

Metrics and tradeoff in tiling mechanism

- **Two key metrics** should be addressed to properly achieve the desired save of transmission and computation resources:
 - Transmission efficiency
 - Encoding efficiency
- The interplay of these two metrics forms the main tradeoff in tiled-based streaming: the granularity of tiles.

Key metrics in tiling mechanism

• Transmission efficiency:

• This metric evaluates the ratio of the area between the viewport and the transmitted tiles.

• There exists mismatch between the viewport and the aggregated shape of transmitted tiles. Such mismatch results in **waste of unviewed area** and lowers the transmission efficiency.

Key metrics in tiling mechanism

• What affects transmission efficiency?

• Different tiling setting results in different mismatch of the viewport and the transmitted tiles.

(a) Waste of 6×4 tiling: 57% of transmitted area.

(b) Waste of 8×6 tiling: 44% of transmitted area.

• Typically, coarse-grained tiling results in lower transmission efficiency, while fine-grained tiling results in better transmission efficiency.

Key metrics in tiling mechanism

• Encoding efficiency:

• This metric evaluates the efficiency of encoding all the required tiles.

• What affects encoding efficiency?

- To enable tile-based transmission, each tile should be independently encoded and decoded.
- The number of tiles affects the encoding efficiency [4].

• Given the same viewport, the higher the number of tiles is, the smaller each tile would be, and the lower the **spatial** redundancy can be utilized to compress and encode a tile.

Tradeoff of tiling mechanism

- The tradeoff of tiling mechanism lies in the granularity of tiles:
 - **Coarse-grained tiles** benefit from higher encoding efficiency but suffer from lower transmission efficiency.
 - **Fine-grained tiles** benefit from higher transmission efficiency but suffer from lower encoding efficiency.

(b) Higher number of tiles (16 tiles) but lower wasted area (44%).

Introduction constraints of the second secon

Existing tiling mechanisms: Dynamic tiling

- Dynamic tiling [4, 5, 6]
 - Split the whole panoramic video into dynamic (usually rectilinear) shapes of tiles according to video content, user's visual attention, storage capacity, and transmission capacity.
- Advantage
 - Higher flexibility and adaptivity to strike a balance between transmission and encoding efficiency.
- Drawback
 - Impose huge preprocessing overhead on the server.
 - Unscalable for large-scale real-time content, especially for multiple clients with diverse viewing behaviors requesting live 360° videos.

Introduction Related work and motivation Observation and analysis SweeTile configuration Evaluation Conclusion Reference

Light-weight is a necessity, not just a benefit

- Although VR/AR with 360° video streaming has been envisioned as an upcoming revolution that will change how people interact with the world, the revolution has never been triggered for most consumers.
 - The most popular headset, Meta's Quest, is struggling for its selling units (20 million estimated) and retention rate (10% estimated) [7].
 - Apple's long-rumored "Reality Pro" has been postponed from 2021 to 2023 and still not yet unveiled [8].
- Existing wireless VR headset has burdening weight (>500g) and limited battery capacity (2-3 hours) [9], which are physical limitations restricting the popularity of VR headset.
- Light-weight both in hardware and software is a necessity for the revolution of VR headset.

Existing light-weight tiling mechanisms: Fixed tiling

- Fixed tiling [10, 11]
 - Split the whole video into fixed shapes of tiles regardless of video content, visual attention, etc.
- Advantage
 - Efficient both on the server side and the client side (due to fixed shapes, simple tiling mechanisms, and lower encoding and decoding overhead).
 - Applicable on real-time streaming application.
- Drawback
 - The coarse-grained tiles still suffer from low transmission efficiency.
 - The fine-grained tiles still lower the encoding efficiency and increase the rendering overheads on the client side.

Observation of human field of view

- To better strike a balance between transmission efficiency and encoding efficiency, we first observe how the human FoV interacts with actual tiles.
- Typically, human FoV is split into three regions, cotagorized by their degrees of span with respect to the FoV center:
 - fovea and near-periphery (0° \sim 30°),
 - 2 mid-periphery $(30^{\circ} \sim 60^{\circ})$,
 - **③** far-periphery ($60^{\circ} \sim$).
- Visual acuity for pattern and color recognition degrades as the angle of view from the FoV center increases.

Efficient coarse-grained tiling

- Since visual acuity degrades as the angle of view from the FoV center increases, most existing tile-based streaming adapts the required bitrate accordingly.
- It is reasonable to transmit high-quality content only in near-periphery and basic-quality content in mid-periphery to save bandwidth consumption without severely affecting the user's quality of experience (QoE).
- To develop efficient tiling mechanism, we choose 6 × 3 tiling based on equirectangular projection (ERP), a coarse-grained fixed tiling, as the reference layout.
- Based on 6 × 3 tiling, we will propose a tiling mechanism breaking the tie of the tradeoff between transmission and encoding efficiency.

Viewport position matters!

- We first categorize the relative viewport position into four regions and calculate their required bitrates if 4K tiles are transmitted for near-periphery and 1080p tiles are transmitted for mid-periphery.
 - Core region: 5.50 Mbps (good transmission efficiency)
 - Edge region: 6.89 Mbps (good transmission efficiency)
 - Corner region: 9.55 Mbps (poor transmission efficiency)
 - Polar region: 13.38 Mbps (poor transmission efficiency)

Real-world dataset analysis

• We further verify how often the four regions would be traversed in a real-world dataset [13].

(a) User 1 watching videoPortoRiverside.Ave. bitrate: 7.26 Mbps

(b) User 46 watching video GazaFishermen. Ave. bitrate: 10.27 Mbps

Real-world dataset analysis

• Throughout the dataset (57 users watching 19 videos), the percentage of duration traversing each region is listed below:

- The corner and polar region suffer from extremely low transmission efficiency due to
 - the distortion of equirectangular projection,
 - the mismatch of aggregated shape of tiling.
- Our goal is to increase the coverage of the core region (or later defined as the "sweet spot") to increase the duration of viewpoint traversing in the core region.

Definition of a sweet spot

- We define **the core region of an equatorial tile** as the "sweet spot" since a viewpoint traversing into this spot perfectly enjoys full coverage of near-periphery by a single tile.
- Let α define the diameter in degree that near-periphery covers. The defined sweet spot is a square region with a (60° α) span both in longitude and latitude:

 Such a sweet spot repeats for 6 times along the equator by every 60° in one 6 × 3 ERP.

SweeTile: Combination of sweet spots

- The concept of SweeTile is intuitive:
 - If we can cover the visual sphere with sweet spots, we could leverage the benefit of sweet spots no matter where the user's viewpoint is.
- The proposed SweeTile is a combination of 24 versions of 6×3 ERP:

Introduction Related work and motivation Observation and analysis SweeTile configuration Evaluation Conclusion Reference

Overall coverage of sweet spots for SweeTile

- In our evaluation, we assume the diameter α of near periphery (high-quality region) to be 40°.
- For the SweeTile configuration, the sweet spots with $\alpha = 40^{\circ}$ achieves an coverage of 91% of the visual sphere.

20 / 46

SweeTile: Rotate sweet spots to cover the visual sphere

- Define the visual sphere as a unit sphere centered at (0, 0, 0).
- Let $f_p : R^2 \to R^3$ denote a mapping from (λ, ψ) to (x, y, z) for an ERP p, where
 - (λ, ψ) represents the longitude and latitude of ERP p,
 - (x, y, z) corresponds to the Euclidean coordinate.
- In order to rotate various versions of ERP, we define

$$R_a(\theta), \forall a \in \{x, y, z\}$$

as a rotation matrix to rotate the mapping f_p along the *a*-axis by an angle of θ to get a new mapping.

Introduction Related work and motivation Observation and analysis SweeTile configuration Evaluation Conclusion Reference

SweeTile: Rotate to cover the visual sphere

• Note that the rotation matrix is a 3×3 matrix defined along each axis:

$$R_{x}(heta) = egin{pmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{pmatrix}$$

$$R_{y}(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

$$R_z(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

イロト イボト イヨト イヨト

SweeTile: Reference projection P

• Specify P as a reference ERP with $f_P(\lambda, \psi) = (x, y, z)$ where

$$x = \cos(\lambda)\cos(\psi), \ y = \sin(\lambda)\cos(\psi), \ z = \sin(\psi),$$

and its six equatorial tiles located at

$$(x_c, y_c, z_c) = f_p(c \times 60^\circ, 0)$$

= $(\cos(c \times 60^\circ), \sin(c \times 60^\circ), 0), \forall c \in \{0, 1, \dots, 5\}$

SweeTile: Sweet spots of P

• The six centers of equatorial tiles of *P*:

SweeTile: Rotation of sweet spots

- Note that each version of ERP has only 6 sweet spots covering the equatorial region of the corresponding projection. We need to rotate some ERPs to cover the whole visual sphere.
- We classify all the 24 ERPs into 3 categories
 - Vertical sets $V = \{V_1, V_2, \dots, V_9\}$: covers the polar region of P and the region with longitude $c \times 60^\circ, \forall c \in \{0, \dots, 5\}$.
 - Horizontal sets $H = \{H_1, H_2, H_3\}$: covers the equatorial region of *P*
 - Expanding sets $E = \{E_1, E_2, \cdots, E_{12}\}$: covers the remaining region of *P*.
- Before heading into all the 24 versions of ERP, we first take V₁ (the first version in the vertical set) for example to demonstrate how the rotation matrix works.
- We define $f_{V_1}(\lambda, \psi) = R_x(90^\circ) f_P(\lambda, \psi)$, which is to rotate P by 90° along the x-axis.

Introduction Related work and motivation Observation and analysis SweeTile configuration Evaluation Conclusion Reference

SweeTile: Rotation of sweet spots

- For notation clarity, we treat (x, y, z) as a column vector.
- The centers of six equatorial tiles for V_1 can be written as

$$f_{V_1}(0 \times 60^\circ, 0) = R_x(90^\circ) f_P(0 \times 60^\circ, 0)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos 90^\circ & -\sin 90^\circ \\ 0 & \sin 90^\circ & \cos 90^\circ \end{pmatrix} (1, 0, 0) = (1, 0, 0),$$

$$f_{V_1}(1 \times 60^\circ, 0) = R_x(90^\circ) f_P(1 \times 60^\circ, 0)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos 90^\circ & -\sin 90^\circ \\ 0 & \sin 90^\circ & \cos 90^\circ \end{pmatrix} (0.5, 0.87, 0) = (0.5, 0, 0.87),$$

$$\cdots \qquad P$$

Introduction Related work and motivation Observation and analysis SweeTile configuration Evaluation Conclusion Reference

SweeTile: Rotation of sweet spots

 Vertical sets (V₁ ~ V₉): covers the polar region of P and the region with longitude c × 60°, ∀c ∈ {0, · · · , 5}.

$$f_{V_1} = R_x(90^\circ)\mathbf{f_P}, f_{V_2} = R_y(20^\circ)f_{V_1}, f_{V_3} = R_y(40^\circ)f_{V_1}.$$

$$f_{V_4} = R_z(60^\circ)f_{V_1}, f_{V_5} = R_z(60^\circ)f_{V_2}, f_{V_6} = R_z(60^\circ)f_{V_3}.$$

$$f_{V_7} = R_z(120^\circ)f_{V_1}, f_{V_8} = R_z(120^\circ)f_{V_2}, f_{V_9} = R_z(120^\circ)f_{V_3}.$$

୬ ୯ (୦ 27 / 46 Introduction Related work and motivation Observation and analysis SweeTile configuration Evaluation Ocococo Ococo Ococ

SweeTile: Rotation of sweet spots

• Horizontal sets $(H_1 \sim H_3)$: covers the equatorial region of P.

$$f_{H_1} = R_z(90^\circ)\mathbf{f_P}, f_{H_2} = R_z(15^\circ)f_{H_1}, f_{H_3} = R_z(-15^\circ)f_{H_1}.$$

SweeTile: Rotation of sweet spots

• Expanding sets $(E_1 \sim E_{12})$: covers the remaining region.

$$f_{E_1} = R_x(36^\circ) f_{H_1}, \qquad f_{E_2} = R_x(72^\circ) f_{H_1}, f_{E_3} = R_x(108^\circ) f_{H_1}, \qquad f_{E_4} = R_x(144^\circ) f_{H_1}.$$

 $\begin{aligned} f_{E_5} &= R_z(60^\circ) f_{E_1}, & f_{E_6} &= R_z(60^\circ) f_{E_2}, \\ f_{E_7} &= R_z(60^\circ) f_{E_3}, & f_{E_8} &= R_z(60^\circ) f_{E_4}, \end{aligned}$

 $\begin{aligned} f_{E_9} &= R_z(120^\circ) f_{E_1}, \qquad f_{E_{10}} &= R_z(120^\circ) f_{E_2}, \\ f_{E_{11}} &= R_z(120^\circ) f_{E_3}, \qquad f_{E_{12}} &= R_z(120^\circ) f_{E_4}. \end{aligned}$

29 / 46

- The optimal tiling for SweeTile is to find the best sweet spot among the 144 sweet spots (24 versions × 6 sweet spots per version), which is **the nearest sweet spot with respect to the user's viewpoint**.
- For example, given the user's viewpoint at (0.25, 0.6, 0.75):

- Instead of looping over 144 sweet spots in search of the best sweet spot, we propose an efficient way requiring only 24 iterations to find the best sweet spot.
- We introduce how to perform only 1 search to find the closest sweet spot among 6 sweet spots within the same projection.
- Take the user's viewpoint at (0.25, 0.6, 0.75) and projection V_4 for example,

31 / 46

- \bullet Denote ${\cal S}$ as the set of 24 ERP versions in SweeTile.
- Define $f_p^{-1}: R^3 \to R^2$ as an inverse function of f_p for $p \in S$.
- We first inversely project (0.25, 0.6, 0.75) back to ERP coordinate according to V₄:

$$f_{V_4}^{-1}(0.25, 0.6, 0.75) = (50^\circ, -5^\circ).$$

• The closest sweet spot for ($\lambda,\psi)$ =(50°, $-5^\circ)$ is

$$\begin{array}{l} (\lfloor (\lambda + 30^{\circ})/60^{\circ} \rfloor \times 60^{\circ}, 0^{\circ}) \\ = (\lfloor (50^{\circ} + 30^{\circ})/60^{\circ} \rfloor \times 60^{\circ}, 0^{\circ}) = (60^{\circ}, 0^{\circ}) \end{array}$$

Note that [(λ + 30°)/60°] is to find the closest index of the sweet spot with respect to λ.

Algorithm 1 Efficient tiling selection algorithm

- 1: Input: S, (x_0, y_0, z_0) . 2: Initialization: $d_{\min} = 2$. 3: for $p \in S$ do ▷ Loop over 24 version of ERPs. $(\lambda_0, \psi_0) \leftarrow f_n^{-1}(x_0, y_0, z_0)$. \triangleright Find projection point under p. 4: $(x_1, y_1, z_1) \leftarrow f_p(|(\lambda_0 + 30^\circ)/60^\circ| \times 60^\circ, 0^\circ).$ \triangleright Find the 5: 6: closest sweet spot in p. if $||(x_1, y_1, z_1) - (x_0, y_0, z_0)||_2 < d_{\min}$ then \triangleright Update d_{\min} 7: and poweet. $d_{\min} \leftarrow \|(x_1, y_1, z_1) - (x_0, y_0, z_0)\|_2$ 8: 9: $p_{\text{sweet}} \leftarrow p$. end if 10: 11: end for
- 12: **Return:** p_{sweet} .

Evaluation

- Simulation environment
 - We apply a real-world head movement dataset [13] comprising 19 videos viewed by 57 users.
 - We implement SOTA viewport predictor [14] with a prediction window of 5s.
 - We replay the throughput trace of a 4G/LTE dataset [15] to simulate the underlying bandwidth fluctuation.
- Benchmark tiling mechanisms
 - Traditional fixed tiling (Fixed 6×3 tiling)
 - Adaptive fixed tiling (TBRA [11]): TBRA adaptively selects the best tiling among 4 × 4, 5 × 5, 6 × 6, · · · ,10 × 10 tiling with respect to viewport prediction error and bandwidth condition.

Evaluation on efficiency

- Number of required tiles
 - SweeTile reduces the required number of tiles by 10% and 40% compared to fixed 6×3 and TBRA, and hence achieves the highest encoding efficiency.
- Waste and miss ratio
 - Similarly, SweeTile achieves higher transmission efficiency by reducing the waste ratio by 9% compared to fixed 6×3 .
 - Although TBRA achieves even higher transmission efficiency (lower waste ratio), such improvement comes at the cost of higher miss ratio due to the error of viewport prediction.

Achievable quality

- We verify the achievable quality by measuring the video quality in (1) peak signal-to-noise ratio (PSNR) and (2) the difference of PSNR between adjacent video segments.
 - PSNR: TBRA achieves the highest PSNR since it wastes less resource by fine-grained tiling.
 - Difference of PSNR: fixed 6×3 achieves the highest stability.

Achievable quality

• We further plot the tradeoff between quality and quality difference normalized with respect to fixed 6 × 3 tiling.

We could see a clear tradeoff between quality and quality difference, where TBRA achieves the best quality while fixed 6 × 3 tiling achieves the lowest quality difference.

Achievable quality

• These results indicate that SweeTile may not be the first option if the QoE is the first priority. However, SweeTile is suitable for light-wieght VR devices with limited computation and power consumption since SweeTile requires substantially lower number of tiles to cover users' FoV.

Conclusion

- Compared to fixed 6×3, SweeTile breaks the tie of the well-known tradeoff and improves both the encoding and transmission efficiency.
- If the computation resource and power consumption are limited on the client side (commonly for light-weight VR devices), SweeTile pops up as a cost-effective solution since
 - SweeTile achieves superior encoding efficiency,
 - the overall computation overhead to determine the best tiling is extremely light.
- SweeTile could serve as a promising building block for viewport prediction, tile selection, and rate adaptation for 360° streaming.

Reference I

- Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu, "Shooting a Moving Target: Motion-Prediction-Based Transmission for 360-Degree Videos," in *Proc. IEEE International Conference on Big Data*, 2016, pp. 1161–1170.
- [2] C. Perfecto, M. S. Elbamby, J. D. Ser, and M. Bennis, "Taming the Latency in Multi-User VR 360°: A QoE-Aware Deep Learning-Aided Multicast Framework," *IEEE Trans. Commun.*, vol. 68, no. 4, pp. 2491–2508, 2020.
- C. Brown, "Bringing pixels front and center in vr video," 2017. [Online]. Available: https://blog.google/products/ google-ar-vr/bringing-pixels-front-and-center-vr-video/

Reference II

- [4] M. Xiao, C. Zhou, Y. Liu, and S. Chen, "OpTile: Toward Optimal Tiling in 360-Degree Video Streaming," in Proceedings of the 25th ACM International Conference on Multimedia, ser. MM '17. New York, NY, USA: Association for Computing Machinery, 2017, p. 708–716. [Online]. Available: https://doi.org/10.1145/3123266.3123339
- [5] C. Zhou, M. Xiao, and Y. Liu, "ClusTile: Toward Minimizing Bandwidth in 360-degree Video Streaming," in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, pp. 962–970.

Introduction	Related work and motivation	Observation and analysis	SweeTile configuration	Evaluation	Conclusion	
0000000	000	00000	000000000000000000000000000000000000000	00000		•••••

Reference III

- [6] C. Madarasingha and K. Thilakarathna, "VASTile: Viewport Adaptive Scalable 360-Degree Video Frame Tiling," in Proceedings of the 29th ACM International Conference on Multimedia, ser. MM '21. New York, NY, USA: Association for Computing Machinery, 2021, p. 4555–4563. [Online]. Available: https://doi.org/10.1145/3474085.3475613
- J. Wöbbeking, "Leak reveals sales figures for meta quest devices," 2023. [Online]. Available: https://mixed-news.com/ en/leak-reveals-sales-figures-for-meta-quest-devices/
- J. Porter, "Everything we know about apple's mixed reality headset," 2023. [Online]. Available: https://www.theverge.com/23689334/ apple-mixed-reality-headset-augmented-virtual-reality-ar-vr-rumors-s

Reference IV

- [9] A. Robertson, "Oculus quest vs. oculus quest 2: what's the difference?" 2020. [Online]. Available: https://www.theverge.com/21433030/ oculus-quest-2-vr-headset-specs-comparison-htc-valve-microsoft
- [10] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, "Optimizing 360 Video Delivery over Cellular Networks," in *Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges*, ser. ATC '16. Association for Computing Machinery, 2016, p. 1–6. [Online]. Available: https://doi.org/10.1145/2980055.2980056

Reference V

- [11] L. Zhang, Y. Suo, X. Wu, F. Wang, Y. Chen, L. Cui, J. Liu, and Z. Ming, "TBRA: Tiling and Bitrate Adaptation for Mobile 360-Degree Video Streaming," in *Proceedings of the* 29th ACM International Conference on Multimedia, ser. MM '21. New York, NY, USA: Association for Computing Machinery, 2021, p. 4007–4015. [Online]. Available: https://doi.org/10.1145/3474085.3475590
- [12] Y. Sauer, A. Sipatchin, S. Wahl, and M. García García, "Assessment of Consumer VR-headsets' Objective and Subjective Field of View (FOV) and its Feasibility for Visual Field Testing," *Virtual Reality*, vol. 26, no. 3, p. 1089–1101, 2022.

Reference VI

- [13] Y. Rai, J. Gutiérrez, and P. Le Callet, "A Dataset of Head and Eye Movements for 360 Degree Images," in ACM Multimedia Systems Conference (MMSys), 2017, p. 205–210.
- [14] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao, "Gaze Prediction in Dynamic 360° Immersive Videos," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
- [15] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen, and F. De Turck, "HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks," *IEEE Communications Letters*, vol. 20, no. 11, pp. 2177–2180, 2016.