Hyper-Accelerated Learning for Brain-Computer Interfaces via Partial Target-Aware Optimal Transport

Ekansh Gupta, <u>Cheng-Yeh Chen</u>, Raghupathy Sivakumar Georgia Institute of Technology Atlanta GA, USA

Brain-Computer Interfaces (BCIs)

- A powerful modality for human-machine communication
- Useful for exciting and futuristic applications for wearables like robot control, gaming, virtual reality, etc.

- BCIs can be invasive or non-invasive
 - Invasive BCIs require specialized surgery but measure clear signal
 - Non-invasive BCIs can be deployed widely but measure noisy signal

Challenges

- Systems designed for non-invasive BCIs largely suffer from poor generalization
 - Between different subjects and environments, brain signals show considerable variance
 - This necessitates long retraining/calibration sessions
- The lack of generalization is typically attributed to the **covariate shift** of signals in the probability space, which manifests itself as disparate marginal and class conditional distributions across the source and target domains

· In this paper, we propose adapting models to address covariate shift

ErrP and Dataset

- Error Potential (ErrP) dataset collected in our lab from 10 subjects
- ErrP signal is elicited in the brain when a subject observes an erroneous activity
- Each subject observes an agent navigate a maze on their screen (the agent makes a wrong move with a probability of 0.2)

Supervised detection pipeline

- We start with the xDAWN + Riemannian Geometry (xRG) based supervised model that obtains state-of-the-art performance for ErrP generalization
- xRG contains two stages that use supervised learning
 - **Template generation stage (stage 1)**: generates signal embeddings from raw signal data using a template estimated from the ground-truth class labels
 - Classification stage (stage 2): trains the classifier using the ground-truth class labels

Factors limiting detection generalization

MDM / ElecticNet	Label-assisted	Label-free		
MDM / Elasticinet	stage 1	stage 1		
Label-assisted stage 2	76.0% / 78.8%	64.8% / 71.3%		
Label-free stage 2	57.1% / 60.3%	55.8% / 59.1%		
Silhouette score	0.0202	0.0116		

- Original accuracy achieved by supervised learning:
 - 76.0% for MDM and 78.8% for ElasticNet
- Removing labels in stage 1:
 - Accuracy drops by 7.5% for ElasticNet due to diminished class discrimination in the label-free embeddings
- Removing labels in stage 2:
 - Accuracy drops by 18.5% for ElasticNet due to covariate shift of signals
- Removing labels in stage 1 & 2:
 - Accuracy drops by 19.7% for ElasticNet

Optimal transport: solution to covariate shift

- Optimal transport is the general problem of adapting one distribution to another as efficiently as possible
- Source distribution ${f a}$, target distribution ${f b}$, transport plan γ , and cost matrix ${f M}$
- Problem formulation:

$$\gamma = \underset{\gamma}{\arg\min} \langle \gamma, \mathbf{M} \rangle_{\mathbf{F}} + \lambda \Omega_{e}(\gamma) + \eta \Omega_{g}(\gamma)$$
(2)

s.t.
$$\gamma \mathbf{1} = \mathbf{a}, \ \gamma^T \mathbf{1} = \mathbf{b}, \ \gamma \ge 0$$
 (3)

- Entropic regularization term Ω_e and group lasso regularization term Ω_g

Types of transport maps

Positive transport

- The source domain maintains its class discrimination after transport, and its ErrP points are adjacent to the target ErrP points and vice versa
- **Optimal transport** t-SNE plot with reimannian distance t-SNE plot with reimannian distance Source ErrP Source Non-Erri Target Erri Source Non-Err Target ErrP Target Non-Err -7.5 50 75 Target Source domain domain **Optimal transport** t-SNE plot with reimannian distance t-SNE plot with reimannian distance Source ErrP Target Source Non-Err domain Source Source Err Source Non-Er domain Target Err Target Non-En

Negative transport

 The source ErrP points are adjacent to the non-ErrP points in the target dataset and vice versa

Partial target-aware optimal transport (PTA-OT)

- To mitigate negative transport, we propose "partial target-aware optimal transport" by modifying the cost matrix M to establish the desired relationship between the source and target points
- Outline of PTA-OT
 - Calculate Riemannian mean of the centroids of the target data class by only a few labeled samples from the target dataset
 - Bias the transport map to avoid transporting source labels to an area that is close to the centroids of another class
 - Solve the biased optimal transport problem

Partial target-aware optimal transport (PTA-OT)

Algorithm 1 Partial target-aware optimal transport

Performance evaluation

	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	Mean
xRG MDM	59.2%	53.8%	54.8%	60.4%	54.2%	56.7%	54.3%	55.2%	53.5%	55.5%	55.8%
PTA-OT MDM	61.2%	63.0%	61.4%	65.8%	59.9%	60.6%	59.0%	64.4%	60.9%	63.8%	62.0%
xRG ElasticNet	62.6%	56.2%	61.4%	61.4%	58.6%	59.4%	57.9%	53.8%	58.0%	62.0%	59.1%
PTA-OT ElasticNet	66.6%	67.6%	63.2%	63.9%	68.5%	64.1%	60.1%	74.0%	62.2%	71.54%	66.2%

Table 2: Subject-wise cross-user transfer learning accuracy for label-free xRG vs our algorithm.

• Highlight 1:

• The improvement is universal for all the subjects

Comparison with label-assisted/free stages

- Highlight 2:
 - The average accuracy is improved by 11.1% / 12.0% for MDM / ElasticNet
- Highlight 3:
 - Given the label-free embeddings (stage 1), we are able to reach within 95.6% and 92.8% of the accuracy for MDM and ElasticNet
- Highlight 4:
 - Given the label-free classification (stage 2), we are able to outperform by 8.6% and 9.8% of the accuracy for MDM and ElasticNet
- Highlight 5:
 - We use only a small fraction (5%) of the target labels, thereby accelerating model generalization by an order of magnitude

Conclusion and future work

- Our algorithm is a general-purpose algorithm that works with data distributions which suffer from covariate shift and minimizes the disparity between marginal source and target distributions while also preserving the class conditional probabilities
- Our preliminary results show significant potential in using PTA-OT
 - Using 5% of labels to achieved 95% of supervised performance
- Future work
 - incorporate both temporal and spatial information into optimal transport
 - increase the granularity of domain adaptation
 - reduce the required number of labels
 - increase both within-subject and cross-subject accuracy

Contact Information

- Ekansh Gupta
 - egupta8@gatech.edu
 - Currently on the job market for both internship and full positions
- Cheng-Yeh Chen
 - cchen847@gatech.edu
- Raghupathy Sivakumar (Siva)
 - <u>siva@gatech.edu</u>

Thank you!

