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In this supplementary document, we provide a complete proof for Theorem 1 aiming to bound

the regret with delayed update in the online learning algorithm for context-aware QoE estimation.

Theorem 1. (Regret bound with delayed update) Let Kt = t
2α

3α+D log(t) and hd ≤ ⌈T
1

3α+D ⌉, ∀d =

1, · · · , D. If there exists L > 0 and α > 0 such that |β(χ)− β(χ′)| ≤ L∥χ− χ′∥α for any two

contexts χ and χ′, where β(·) is a function mapping each context to its QoE, then the complexity

of the bound for RT belongs to O
(
W 2

max2
D log(T )T

2α+D
3α+D

)
.

Before proving Theorem 1, we first define an assumption for the relationship between QoE

and context space. Based on this assumption, we prove a proposition on the sub-linearity of the

proposed CMAB without considering delayed feedback and finally include the effect of delayed

feedback to complete the proof for Theorem 1. To bound the regret of learning, our proposed

QoE should be aware “enough” of context information. Assumption 1 assumes that statistically

similar context information implies similar QoE.

Assumption 1. (Hölder condition) Define ∥ · ∥ as the Euclidean norm. There exists L > 0 and

α > 0 such that

|βt(χ)− βt(χ
′)| ≤ L∥χ− χ′∥α (1)

for any two contexts χ and χ′, where βt(χ) is a function mapping each context χ to its QoE βt.
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Assumption 1 is required for the following proposition and theorem. Such an assumption

could be satisfied since the defined QoE is bounded within 0 and 1. There must exist L and α

meeting Assumption 1.

To proceed, we first prove the regret bound assuming all the updates of QoE estimation are

instant (no delayed update is incurred) in Proposition 1.

Proposition 1. (Regret bound) Let Kt = t
2α

3α+D log(t) and hd ≤ ⌈T
1

3α+D ⌉, ∀d = 1, · · · , D. If

Assumption 1 holds, the complexity of RT belongs to O
(
T

2α+D
3α+D log(T )

)
, being sub-linear in T .

Proof. For each hypercube p ∈ PX , let β̄(p) = supχ∈p β(χ) and β(p) = infχ∈p β(χ) be the

highest and lowest expected QoE over all context χ ∈ p, where β(χ) denotes the expected QoE

mapped from χ. Also let χ̂p be the context at the geometrical center of a hypercube p and

β̂(p) = β(χ̂p) be the corresponding expected QoE. Given χ(i, j, t′) as the context of (i, j, t′) and

pt = {fX
(
χ(i, j, t′)

)
| ∀i, j, t′} as the set of corresponding hypercubes, we define

β̄t = {β̄(p) | ∀p ∈ pt}, (2)

β
t
= {β(p) | ∀p ∈ pt}, (3)

β̂t = {β̂(p) | ∀p ∈ pt}. (4)

For a scheduling decision at t, we define Ê t as specific resource allocation satisfying

Ê t = argmax
Et | E{Et′}≤B,∀t′∈{t,··· ,t+Wt}

r(β̂t,E t). (5)

Ê t could help identifying the set of poor resource allocations:

Lt =
{
EL

t | E
{
EL

t′

}
≤ B, ∀t′ ∈ {t, · · · , t+Wt}, r(βt

, Ê t)− r(β̄t,EL
t ) ≥ Atθ

}
, (6)

which is the set of sub-optimal subsets of resource allocation for hypercube set pt with A > 0

and θ < 0 being the parameters only in the regret analysis. Note that EL
t in Lt is sub-optimal for

pt since the sum of the lowest expected reward of Ê t is higher than the best expected reward of

EL
t by at least Atθ. As a result, the resource allocation not in Lt could be treated as near-optimal

candidate for pt.

The regret R(T ) is divided into three components:

R(T ) = E {Re(T )}+ E {Rs(T )}+ E {Rn(T )} , (7)

where E {Re(T )} accounts for the regret incurred by exploration, E {Rs(T )} accounts for the

regret incurred by the sub-optimal decisions in Lt during exploitation, and E {Rn(T )} accounts
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for the regret resulting from near-optimal decisions during exploitation. The regret bound could

be given by the three seperate components one by one through Lemma 1, 2, and 3.

Lemma 1. (Bound for E {Re(T )}) Given K = tz log(t) and hd ≤ ⌈T γ⌉,∀d = 1, · · · , D, where

0 < z < 1 and 0 < γ < 1
D

, the regret E {Re(T )} could be bounded by

E {Re(T )} ≤ Wmax2
D(T z+γD log(T ) + T γD). (8)

Proof. For exploration phase, there exists some under-explored hypercubes (∃ p ∈ PX s.t. |Ap| ≤

Kt = tz log(t)). There could be at most ⌈T z log(T )⌉ exploration phases for each hypercube. Note

that there are
∏D

d=1 hd hypercubes in the context space. The maximum number of exploration

phases is
(∏D

d=1 hd

)
⌈T z log(T )⌉. Since the maximum and minimum achievable QoE in the

objective function are Wmax and 0, the maximum regret of poor resource allocation in one

exploration phase is bounded by Wmax. As a result, the overall regret for E {Re(T )} is given by

E {Re(T )} ≤Wmax

(
D∏

d=1

hd

)
⌈T z log(T )⌉ ≤ Wmax⌈T γ⌉D⌈T z log(T )⌉

≤Wmax2
DT γD(T z log(T ) + 1) = Wmax2

D(T z+γD log(T ) + T γD),

(9)

using the fact that ⌈T γ⌉D ≤ (2T γ)D = 2DT γD.

Lemma 2. (Bound for E {Rs(T )}) Given K = tz log(t) and hd ≤ ⌈T γ⌉,∀d = 1, · · · , D, where

0 < z < 1 and 0 < γ < 1
D

, if Assumption 1 holds and 2M(t−z/2 + LDαh−α
d ) ≤ Atθ holds for

1 ≤ t ≤ T where M = NxNyWmax, the regret E {Re(T )} could be bounded by

E {Rs(T )} ≤ Wmax

M∑
k=1

 M

k

M
π2

3
. (10)

Proof. For exploitation phase, no hypercube is under-explored, indicating that |Ap| > Kt =

tz log(t), ∀ p ∈ PX . Let Gs
t denote the event that time step t is in exploitation phase and GL

t

denote the the event that EL
t ∈ Lt is selected in t. The regret for exploitation when EL

t ∈ Lt is

selected could be written as

E {Rs(T )} =
T∑
t=1

∑
EL
t ∈Lt

E
{
I{Gs

t ,G
L
t } ×

(
r(E∗

t )− r(EL
t )
)}

=
T∑
t=1

∑
EL
t ∈Lt

Pr{Gs
t , G

L
t } ×

(
r(E∗

t )− r(EL
t )
)
.

(11)
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Since the maximum regret of poor resource allocation is bounded by Wmax, it holds that

E {Rs(T )} ≤ Wmax

T∑
t=1

∑
EL
t ∈Lt

Pr{Gs
t , G

L
t }. (12)

Let β̃t denote the current QoE estimation. For the event GL
t to happen, it must hold that

r(β̃t,EL
t ) ≥ r(β̃t, Ê t). Otherwise, EL

t would not have been selected. Therefore, we have

Pr{Gs
t , G

L
t } ≤ Pr

{
r(β̃t,EL

t ) ≥ r(β̃t, Ê t)
}

(13)

The event
{
r(β̃t,EL

t ) ≥ r(β̃t, Ê t)
}

could be viewed as the subset of the union of the following

three events: {
r(β̃t,EL

t ) ≥ r(β̃t, Ê t)
}
⊆ G1 ∪G2 ∪G3, (14)

where

G1 =
{
r(β̃t,EL

t ) ≥ r(β̄t,EL
t ) +H(t), Gs

t

}
, (15)

G2 =
{
r(β̃t, Ê t) ≤ r(β

t
, Ê t)−H(t), Gs

t

}
, (16)

G3 =

{
r(β̃t,EL

t ) ≥ r(β̃t, Ê t), r(β̃t,EL
t ) < r(β̄t),EL

t ) +H(t),

r(β̃t, Ê t) > r(β
t
, Ê t)−H(t), Gs

t

}
.

(17)

We will bound the probability of G1, G2, and G3 step by step. For clarity, define n = (i, j, t′)

to simplify the notation for a tile. We start from the upper bound of Pr{G1}. Previously, we

define the highest expected QoE over hypercube p as β̄(p) = supχ∈p β(χ). We further annotate

β̄(p) by β̄(pn) = supχ∈pn β(χ) where pn denotes the hypercube corresponding to the tile n. The

expected QoE for tile n is bounded by

E{β̃(pn)} = E

{
1

|Apn|
∑
χ∈pn

βt(χ)

}
≤ 1

|Apn|
∑
χ∈pn

β̄(pn) = β̄(pn). (18)
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Note that βt(χ) denotes the actual QoE mapped from context χ. Also note that the final

equivalence holds due to the fact that the number fo summation over χ ∈ pn equals |Apn|

by definition. By using the relation in (18), we have

Pr{G1} =Pr

{
r(β̃t,EL

t ) ≥ r(β̄t,EL
t ) +H(t), Gs

t

}
≤Pr

{
β̃(pn) ≥ β̄(pn) +

H(t)

M
,∃ n ∈ EL

t , G
s
t

}
≤Pr

{
β̃(pn) ≥ E{β̃(pn)}+

H(t)

M
,∃ n ∈ EL

t , G
s
t

}
=
∑
n∈EL

t

Pr

{
β̃(pn) ≥ E{β̃(pn)}+

H(t)

M
,Gs

t

}
(19)

Equation (19) could be further bounded by the Chernoff-Hoeffdling bound:

Pr{G1} ≤
∑
n∈EL

t

Pr

{
β̃(pn) ≥ E{β̃(pn)}+

H(t)

M
,Gs

t

}

≤
∑
n∈EL

t

exp

(
−2|Apn|H(t)2

M2

)

≤
∑
n∈EL

t

exp

(
−2tz log(t)H(t)2

M2

)
.

(20)

The bound for Pr{G2} can be proved similarly, leading to

Pr{G2} ≤
∑
n∈EL

t

Pr

{
r(β̃t, Ê t) ≤ r(β

t
, Ê t)−H(t), Gs

t

}

≤
∑
n∈Êt

exp

(
−2tz log(t)H(t)2

M2

)
.

(21)

To prove the bound for Pr{G3}, we rewrite the current QoE estimation β̃(p) into

β̃(p) =
1

|Ap|
∑
χ∈p

βt(χ) =
1

|Ap|
∑
χ∈p

β(χ) + ϵχ, (22)

where ϵχ denotes the deviation between the actual QoE βt(χ) and expected QoE β(χ) with

context χ. Similar to the definition in (2), we define the best and worst context for a hypercube

as χbest(p) = argmax
χ∈p

β(χ) and χworst(p) = argmin
χ∈p

β(χ). The best and worst QoE estimation

could be further written as

βbest(p) =
1

|Ap|
∑
χ∈p

(
β(χbest(p)) + ϵχ

)
, (23)

βworst(p) =
1

|Ap|
∑
χ∈p

(β(χworst(p)) + ϵχ) . (24)
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Similar to the definition of β̄t and β, we define βbest
t =

{
βbest(p) | ∀p ∈ p

}
and βworst

t =

{βworst(p) | ∀p ∈ pt}. By Assumption 1, one could show that

βbest(p)− β̃(p) ≤ LD
α
2 h−α

d ,∀d = 1, · · · , D, (25)

and

β̃(p)− βworst(p) ≤ LD
α
2 h−α

d ,∀d = 1, · · · , D. (26)

Applying (25) and (26) to the resource allocation EL
t and Ê t, we have

r(βbest
t ,EL

t )− r(β̃t,EL
t ) ≤

∑
n∈EL

t

(
βbest(pn)− β̃(pn)

)
≤ MLD

α
2 h−α

d ,∀d = 1, · · · , D, (27)

and

r(β̃t, Ê t)− r(βworst
t , Ê t) ≤

∑
n∈Êt

(
β̃(pn)− βworst(pn)

)
≤ MLD

α
2 h−α

d ,∀d = 1, · · · , D. (28)

There are three components in the event of G3. By the definition of (25) and (26), the first

component in G3 holds that{
r(β̃t,EL

t ) ≥ r(β̃t, Ê t)
}
⊆
{
r(β̃

best
t ,EL

t ) ≥ r(β̃
worst
t , Ê t)

}
. (29)

By (27), the second component in G3 holds that{
r(β̃t,EL

t ) < r(β̄t),EL
t ) +H(t)

}
⊆
{
r(βbest

t ,EL
t )−MLD

α
2 h−α

d < r(β̄t),EL
t ) +H(t)

}
=
{
r(βbest

t ,EL
t ) < r(β̄t),EL

t ) +MLD
α
2 h−α

d +H(t)
}
.

(30)

Similarly, the third component in G3 holds that{
r(β̃t, Ê t) > r(β

t
, Ê t)−H(t)

}
⊆
{
r(βworst

t , Ê t) +MLD
α
2 h−α

d > r(β
t
, Ê t)−H(t)

}
=
{
r(βworst

t , Ê t) > r(β
t
, Ê t)−MLD

α
2 h−α

d −H(t)
} (31)

Combining (29), (30), and (31), we could bound Pr{G3} by

Pr{G3} ≤ Pr

{
r(β̃

best
t ,EL

t ) ≥ r(β̃
worst
t , Ê t),

r(βbest
t ,EL

t ) < r(β̄t),EL
t ) +MLD

α
2 h−α

d +H(t),

r(βworst
t , Ê t) > r(β

t
, Ê t)−MLD

α
2 h−α

d −H(t), Gs
t

}
.

(32)
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It can be shown that Pr{G3} = 0. Supposed 2H(t) + 2MLD
α
2 h−α

d ≤ AT θ is satisfied. Since

EL
t ∈ Lt, we also have r(β

t
,EL

t )− r(β̄t, Ê
)

t ≥ Atθ. Combining these two equations yields

r(β
t
,EL

t )− r(β̄t, Ê t)− (2H(t) + 2MLD
α
2 h−α

d ) ≥ 0, (33)

which can be written as

r(β
t
,EL

t )−H(t)−MLD
α
2 h−α

d ≥ r(β̄t, Ê t) +H(t) +MLD
α
2 h−α

d . (34)

However, if (34) is satisfied, the three components in (32) can not hold true simultaneously. The

second and third component of (32) indicating that r(βbest
t ,EL

t ) < r(βworst
t , Ê t), contradicting the

first component of (32). As a result, Pr{G3} = 0 under condition (32).

By setting H(t) = Mt−z/2, we can rewrite (20) and (21) into

Pr{G2} ≤ M exp

(
−2H(t)2tz log(t)

M2

)
≤ M exp(−2 log(t)) ≤ Mt−2. (35)

and similarly,

Pr{G2} ≤ Mt−2. (36)

In conclusion, starting from (13) and (14), under condition (32), we have

Pr{Gs
t , G

L
t } ≤Pr{G1 ∪G2 ∪G3}

≤Pr{G1}+ Pr{G2}+ Pr{G3}

≤2Mt−2.

(37)

Finally, the bound of E {Rs(T )} could be derived from (12)

E {Rs(T )} ≤Wmax

T∑
t=1

∑
EL
t ∈Lt

Pr{Gs
t , G

L
t } ≤ Wmax|Lt|

T∑
t=1

2Mt−2

≤Wmax|Lt|2M
∞∑
t=1

t−2 ≤ Wmax|Lt|2M
π2

3

≤Wmax

M∑
k=1

 M

k

M
π2

3
.

(38)

Lemma 3. (Bound for E {Rn(T )}) Given K = tz log(t) and hd ≤ ⌈T γ⌉,∀d = 1, · · · , D, where

0 < z < 1 and 0 < γ < 1
D

, if Assumption 1 holds and 2M(t−z/2 + LDαh−α
d ) ≤ Atθ holds for

1 ≤ t ≤ T where M = NxNyWmax, the regret E {Rn(T )} could be bounded by

E {Rn(T )} ≤ 3MLD
α
2 T 1−γα +

A

1 + θ
t1+θ. (39)
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Proof. Let Gn
t = Gs

t∩{E t ∈ Ht} denote the event of selecting a near-optimal resource allocation,

where

Ht =
{
EL

t | E
{
EL

t′

}
≤ B, ∀t′ ∈ {t, · · · , t+Wt}, r(βt

, Ê t)− r(β̄t,EL
t ) < Atθ

}
, (40)

For exploitation phase, the regret due to near-optimal resource allocation could be written as

E {Rn(T )} =
T∑
t=1

E
{
I{Gn

t ∩{EH
t ∈Ht}} ×

(
r(βt,E∗

t )− r(βt,E tH)
)}

=
T∑
t=1

Pr{Gn
t }
(
r(βt,E∗

t )− r(βt,EH
t )
)

≤
T∑
t=1

(
r(βt,E∗

t )− r(βt,EH
t )
)
.

(41)

By definition of (40), we have

r(βt,E∗
t )− r(βt,EH

t ) < Atθ. (42)

Applying Assumption 1 multiple times, we have

r(βt,E∗
t )− r(βt,EH

t )

≤r(β̂t,E∗
t ) +MLD

α
2 h−α

d − r(βt,EH
t )

≤r(β̂t, Ê
∗
t ) +MLD

α
2 h−α

d − r(βt,EH
t )

≤r(β
t
, Ê

∗
t ) + 2MLD

α
2 h−α

d − r(βt,EH
t )

≤r(β
t
, Ê

∗
t ) + 3MLD

α
2 h−α

d − r(β̄t,EH
t )

≤3MLD
α
2 h−α

d + Atθ.

(43)

Setting h−α
d = ⌈T γ⌉−α ≤ T−γα, we have

E {Rn(T )} ≤
T∑
t=1

(
3MLD

α
2 h−α

d + Atθ
)

≤
T∑
t=1

(
3MLD

α
2 T−γα + Atθ

)
≤3MLD

α
2 T 1−γα +

A

1 + θ
t1+θ.

(44)
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The proof of proposition 1 could finally be completed by summing up the bound for each

component in Lemma 1, Lemma 2, and Lemma 3:

R(T ) ≤Wmax2
D(T z+γD log(T ) + T γD) +Wmax

M∑
k=1

 M

k

M
π2

3

+ 3MLD
α
2 T 1−γα +

A

1 + θ
t1+θ.

(45)

To balance the leading orders, parameters like z, γ, A, and θ are specified as z = 2α
3α+D

∈ (0, 1),

γ = z
2α

∈ (0, 1
D
), θ = − z

2
, and A = 2M + 2MLD

α
2 . The overall regret could now be balanced

by

R(T ) ≤Wmax2
D
(
log(T )T

2α+D
3α+D + T

D
3α+D

)
+Wmax

M∑
k=1

 M

k

M
π2

3

+

(
3MLD

α
2 +

(2M + 2MLD
α
2 )(3α +D)

2α +D

)
T

2α+D
3α+D ,

(46)

with the leading order as O
(
Wmax2

D log(T )T
2α+D
3α+D

)
.

Since Proposition 1 does not consider the mis-exploration caused by delayed update, the

counter |Ap| for each hypercube p may record incorrect number of exploration (less than it

should be), leading to sub-optimal exploration decision. Considering the case that the prediction

information for a future tile (i, j, t′) being ahead of current time step t by t′ − t, the maximum

number of mis-exploration for (i, j, t′) is given by t′−t since the real QoE would be revealed after

t′−t time step. Since there exists a maximum prediction window Wmax, the maximum number of

mis-exploration is bounded by Wmax for all the hypercubes. Since the leading order of the bound

for R(T ) without the consideration of delayed update belongs to the regret of exploration Re(T ),

we have the extended bound for regret R(T ) with delayed update as O
(
W 2

max2
D log(T )T

2α+D
3α+D

)
.


